The four DNA bases

Each DNA base is made up of the sugar 2'-deoxyribose linked to a phosphate group and one of the four bases depicted above: adenine (top left), cytosine (top right), guanine (bottom left), and thymine (bottom right).

A DNA chain, also called a strand, has a sense of direction, in which one end is chemically different than the other. The so-called 5' end terminates in a 5' phosphate group (-PO4); the 3' end terminates in a 3' hydroxyl group (-OH). This is important because DNA strands are always synthesized in the 5' to 3' direction.

The DNA that constitutes a gene is a double-stranded molecule consisting of two chains running in opposite directions. The chemical nature of the bases in double-stranded DNA creates a slight twisting force that gives DNA its characteristic gently coiled structure, known as the double helix. The two strands are connected to each other by chemical pairing of each base on one strand to a specific partner on the other strand. Adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C). Thus, A-T and G-C base pairs are said to be complementary. This complementary base pairing is what makes DNA a suitable molecule for carrying our genetic information—one strand of DNA can act as a template to direct the synthesis of a complementary strand. In this way, the information in a DNA sequence is readily copied and passed on to the next generation of cells.

No comments: